您好、欢迎来到现金彩票网!
当前位置:平安彩票 > 放缩 >

请问下这题有没有比较简洁的分析思路(情况都要考虑到)?

发布时间:2019-08-06 01:08 来源:未知 编辑:admin

  要点:估算法毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑

  能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算

  方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方

  进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决

  “直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。

  二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

  所谓截位法,是指在精度允许的范围内,将计算过程当中的数字截位(即只看或

  在加法或者减法中使用截位法时,直接从左边高位开始相加或者相减(同时注意

  在乘法或者除法中使用截位法时,为了使所得结果尽可能精确,需要注意截位近

  如果是求两个乘积的和或者差(即a×b±c×d),应该注意:

  一般说来,在乘法或者除法中使用截位法时,若答案需要有N位精度,则计算过程

  的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消

  情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方

  向的要求。所以应用这种方法时,需要考生在做题当中多加熟悉与训练误差的把握

  ,在可以使用其它方式得到答案并且截位误差可能很大时,尽量避免使用乘法与除

  要点:所谓化同法,是指在比较两个分数大小时,将这两个分数的分子或分母化为相同

  二、 将分子(或分母)化为相近之后,出现某一个分数的分母较大而分子较小或

  某一个分数的分母较小而分子较大的情况,则可直接判断两个分数的大小。

  三、 将分子(或分母)化为非常接近之后,再利用其它速算技巧进行简单判定。

  事实上在资料分析试题当中,将分子(或分母)化为完全相同一般是不可能达到的

  “差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。

  两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。

  在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。

  一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;

  二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。

  三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。

  四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。

  插值法是指在计算数值或者比较数大小的时候,运用一个中间值进行参照比较

  一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以

  进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。

  比如说A与B的比较,如果可以找到一个数C,并且容易得到AC,而BC,即可以判定

  二、在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以

  凑整法是指在计算过程当中,将中间结果凑成一个整数(整百、整千等其它方

  便计算形式的数),从而简化计算的速算方式。凑整法包括加/减法的凑整,也包

  在资料分析的计算当中,真正意义上的完全凑成整数基本上是不可能的,但由于

  资料分析不要求绝对的精度,所以凑成与整数相近的数是资料分析凑整法所真

  放缩法是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果

  进行大胆的放(扩大)或者缩(缩小),从而迅速得到待比较数字大小关系的

  这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做题当中

  经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考

  场之上容易漏掉的数学关系,其本质可以用放缩法来解释。

  计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。

  如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:

  1.“从2004年到2007年的平均增长率”一般表示不包括2004年的增长率;

  2.“2004、2005、2006、2007年的平均增长率”一般表示包括2004年的增长率。

  1.A/B中若A与B同时扩大,则①若A增长率大,则A/B扩大②若B增长率大,则A/B缩小;A/B中若A与B同时缩小,则①若A减少得快,则A/B缩小②若B减少得快,则A/B扩大。

  2.A/A+B中若A与B同时扩大,则①若A增长率大,则A/A+B扩大②若B增长率大,则A/A+B缩小;A/A+B中若A与B同时缩小,则①若A减少得快,则A/A+B缩小②若B减少得快,则A/A+B扩大。

  如果量A与量B构成总量“A+B”,量A增长率为a,量B增长率为b,量“A+B”的增长率为r,则A/B=r-b/a-r,一般用“十字交叉法”来简单计算:

  1.r一定是介于a、b之间的,“十字交叉”相减的时候,一个r在前,另一个r在后;

  2.算出来的A/B=r-b/a-r是未增长之前的比例,如果要计算增长之后的比例,应该在这个比例上再乘以各自的增长率,即A′/B′=(r-b)×(1+a)/(a-r)×(1+b)。

  如果某一个量按照一个固定的速率增长,那么其增长量将越来越大,并且这个量的数值成“等比数列”,中间一项的平方等于两边两项的乘积。

  “综合速算法”包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速算方式,但这些速算方式仍然是提高计算速度的有效手段。

  因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时候多强调首位估算,而尾数往往是微不足道的。因此资料分析当中的尾数法只适用于未经近似或者不需要近似的计算之中。历史数据证明,国考试题资料分析基本上不能用到尾数法,但在地方考题的资料分析当中,尾数法仍然可以有效地简化计算。

  例:“23×27”,首数均为“2”,尾数“3”与“7”的和是“10”,互补

http://arismarketing.net/fangsuo/777.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有